Published on: 2021-09-14 23:40:30
Categories: 28
Share:
Probabilistic Graphical Models Specialization is a set of specialized probabilistic drawing training courses. Probabilistic graphical models are a rich framework for decoding probability distributions. The concepts of this course are in fact a common chapter of statistics and data science based on concepts from probability theory, graph algorithms, machine learning and more. These are the foundations of the latest technology methods, which include a variety of applications, including medical diagnostics, image perception, speech recognition, natural language processing, and more.
Publisher: Coursera
Instructor: Daphne Koller
Language: English
Education Level: Advanced
Number of Courses: 3
Duration: Assuming 11 hours per week, 4 months
COURSE 1
Probabilistic Graphical Models 1: Representation
COURSE 2
Probabilistic Graphical Models 2: Inference
COURSE 3
Probabilistic Graphical Models 3: Learning
This class does require some abstract thinking and mathematical skills. However, it is designed to require fairly little background, and a motivated student can pick up the background material as the concepts are introduced. We hope that, using our new learning platform, it should be possible for everyone to understand all of the core material.
Though, you should be able to program in at least one programming language and have a computer (Windows, Mac or Linux) with internet access (programming assignments will be conducted in Matlab or Octave). It also helps to have some previous exposure to basic concepts in discrete probability theory (independence, conditional independence, and Bayes’ rule).
After Extract, watch with your favorite Player.
English subtitle
Quality: 720p
This collection includes 3 different courses.
Probabilistic Graphical Models 1: Representation
Probabilistic Graphical Models 2: Inference
Probabilistic Graphical Models 3: Learning
In total, about 2.1 GB
Sharing is caring: